Minggu, 22 Januari 2012

Ilmu Alamiah Dasar

Sumber Daya Energi Terbarukan atau NonKonvensional
Energi terbarukan energi yang berasala dari "proses alam yang berkelanjutan", seperti tenaga surya, tenaga angin, arus air proses biologi, danpanas bumi.
Definisi "terbarukan"
Konsep energi terbarukan mulai dikenal pada tahun 1970-an, sebagai upaya untuk mengimbangi pengembangan energi berbahan bakar nuklir dan fosil. Definisi paling umum adalah sumber energi yang dapat dengan cepat dipulihkan kembali secara alami, dan prosesnya berkelanjutan. Dengan definisi ini, maka bahan bakar nuklir dan fosil tidak termasuk di dalamnya.
Energi Berkelanjutan
Dari definisinya, semua energi terbarukan sudah pasti juga merupakan energi berkelanjutan, karena senantiasa tersedia di alam dalam waktu yang relatif sangat panjang sehingga tidak perlu khawatir atau antisipasi akan kehabisan sumbernya. Para pengusung energi non-nuklir tidak memasukkan tenaga nuklir sebagai bagian energi berkelanjutan karena persediaan uranium-235 di alam ada batasnya, katakanlah ratusan tahun.
Sumber energi terbaharui modern
Energi panas bumi
Energi panas bumi berasal dari peluruhan radioaktif di pusat Bumi, yang membuat Bumi panas dari dalam, serta dari panas matahari yang membuat panas permukaan bumi. Ada tiga cara pemanfaatan panas bumi:
·         Sebagai tenaga pembangkit listrik dan digunakan dalam bentuk listrik
·         Sebagai sumber panas yang dimanfaatkan secara langsung menggunakan pipa ke perut bumi
·         Sebagai pompa panas yang dipompa langsung dari perut bumi
Istilah 'panas bumi' digunakan untuk energi panas yang berasal dari perut bumi. Listrik panas bumi dibangkitkan dengan cara memanfaatkan uap yang keluar dari pipa yang ditanam ke perut bumi sebagai hasil pemanasan sumber air resapan di sekitar sumur panas bumi. Uap tersebut kemudian dimanfaatkan langsung untuk memutar turbin atau memanaskan penukar panas untuk menghasilkan tekanan yang kemudian digunakan untuk memutar turbin dan menghasilkan listrik melalui generator.
Energi panas bumi dari inti Bumi lebih dekat ke permukaan di beberapa daerah daripada orang lain. Mana uap panas atau air bawah tanah dapat dimanfaatkan dan dibawa ke permukaan itu dapat digunakan untuk membangkitkan listrik. Seperti tenaga panas bumi sumber ada di beberapa bagian tidak stabil secara geologis dunia seperti Islandia, Selandia Baru, Amerika Serikat , Filipina dan Italia. Dua wilayah yang paling menonjol selama ini di Amerika Serikat berada di Yellowstone baskom dan di utara California. Islandia menghasilkan tenaga panas bumi 170 MW dan dipanaskan 86% dari semua rumah di tahun 2000 melalui energi panas bumi. Beberapa 8.000 MW dari kapasitas operasional total.
Geothermal panas dari permukaan bumi dapat digunakan di sebagian besar dunia langsung ke panas dan dingin bangunan. Suhu kerak bumi beberapa meter di bawah permukaan buffered untuk konstan 7-14C (45-58F), sehingga cairan dapat pra-pra-dipanaskan atau didinginkan dalam pipa bawah tanah, menyediakan pendinginan gratis di musim panas dan, melalui a Pompa panas, pemanas di musim dingin. Menggunakan langsung lainnya adalah di sektor pertanian (rumah kaca), perikanan budidaya dan industri.
Meskipun situs panas bumi mampu menyediakan panas untuk beberapa dekade, akhirnya lokasi tertentu tenang. Beberapa menafsirkan makna ini sebagai lokasi panas bumi tertentu dapat mengalami penipisan. Orang lain melihat penafsiran semacam itu sebagai penggunaan yang tidak akurat dari kata penipisan karena keseluruhan pasokan energi panas bumi di Bumi, dan sumbernya, tetap hampir konstan. Energi panas bumi tergantung pada geologi setempat ketidakstabilan, yang, menurut definisi, tidak dapat diprediksi, dan mungkin stabil.
Sekarang konsumsi energi Panas Bumi tidak dengan cara apapun mengancam atau mengurangi kualitas hidup untuk masa depan Wegenerbuah instalasi, akibatnya, itu dianggap sebagai sumber energi terbarukan.
Energi surya
Karena kebanyakan energi terbaharui pusatnya adalah "energi surya" istilah ini sedikit membingungkan. Namun yang dimaksud di sini adalah energi yang dikumpulkan langsung dari cahaya matahari.
Tenaga surya dapat Digunakan untuk:
·           Menghasilkan listrik Menggunakan sel surya
·           Menggunakan menghasilkan pembangkit listrik tenaga panas surya
·           Menghasilkan listrik Menggunakan menara surya
·           Memanaskan gedung, secara langsung
·           Memanaskan gedung, melalui pompa panas
·           Memanaskan makanan, Menggunakan oven surya.
Jelas matahari tidak memberikan energi konstan untuk setiap titik di bumi, sehingga penggunaannya terbatas. Sel surya sering digunakan untuk daya baterai, karena kebanyakan aplikasi lainnya akan membutuhkan sumber energi sekunder, untuk mengatasi padam. Beberapa pemilik rumah menggunakan tata surya yang menjual energi ke grid pada siang hari, dan menarik energi dari grid di malam hari, inilah keuntungan untuk semua orang, karena permintaan listrik AC tertinggi pada siang hari.
Energi angin
Karena matahari memanaskan permukaan bumi secara tidak merata, maka terbentuklah angin. Energi Kinetik dari angin dapat Digunakan untuk Menjalankan Turbin angin, Beberapa mampu memproduksi tenaga 5 MW. Keluaran tenaga Kubus adalah fungsi dari kecepatan angin, maka Turbin tersebut paling tidak membutuhkan angin dalam kisaran 5,5 m / d (20 km / j), dan dalam praktek sangat sedikit wilayah yang memiliki angin yang bertiup terus menerus. Namun begitu di daerah Pesisir atau daerah di ketinggian, angin yang cukup Tersedia KONSTAN.
Pada 2005 telah ada ribuan Turbin angin yang beroperasi di Beberapa bagian dunia, dengan perusahaan "utility" memiliki kapasitas total lebih dari 47.317MW . Merupakan kapasitas output maksimum yang memungkinkan dan tidak menghitung "load factor".
Ladang angin baru dan taman angin lepas pantai telah direncanakan dan dibuat di seluruh dunia. Ini merupakan cara Penyediaan listrik yang tumbuh dengan cepat di abad ke-21 dan menyediakan tambahan bagi stasiun pembangkit listrik utama. Kebanyakan yang Digunakan Turbin menghasilkan listrik sekitar 25% dari waktu (load factor 25%), tetapi Beberapa Mencapai 35%. Load factor biasanya lebih tinggi pada musim dingin. Ini berarti Bahwa 5mW Turbin dapat memiliki output rata-rata 1,7 MW dalam kasus terbaik.
Angin global jangka panjang potensi teknis diyakini 5 kali konsumsi energi global saat ini atau 40 kali kebutuhan listrik saat ini. Ini membutuhkan 12,7% dari seluruh wilayah tanah, atau lahan yang luas dengan Kelas 3 atau potensi yang lebih besar pada ketinggian 80 meter. Ini mengasumsikan bahwa tanah ditutupi dengan 6 turbin angin besar per kilometer persegi. Pengalaman sumber daya lepas pantai berarti kecepatan angin ~ 90% lebih besar daripada tanah, sehingga sumber daya lepas pantai dapat berkontribusi secara substansial lebih banyak energi.
Ada perlawanan terhadap pembentukan tanah karena angin berbasis awalnya dengan persepsi mereka berisik dan berkontribusi untuk "polusi visual," yaitu, mereka dianggap eyesores. Banyak orang juga mengklaim bahwa turbin membunuh burung, dan bahwa mereka pada umumnya berbuat banyak untuk lingkungan.
Angin kekuatan berbeda-beda dan dengan demikian tidak dapat menjamin power secara berkelanjutan. Beberapa perkiraan menyarankan thpada angin 1.000 MW dari kapasitas pembangkitan dapat diandalkan hanya kekuatan 333MW yang berkesinambungan. Sementara ini mungkin berubah sejalan dengan perkembangan teknologi, advokat telah mengusulkan menggabungkan tenaga angin dengan sumber daya lain, atau penggunaan teknik penyimpanan energi, dengan ini dalam pikiran

Tenaga udara
Udara Energi dapat Digunakan dalam bentuk gerak atau Perbedaan suhu. Udara Karena ribuan kali lebih berat dari udara, maka aliran udara yang pelan pun dapat menghasilkan sejumlah energi yang besar.
Ada banyak bentuk:

·           Hydroelectric energi, sebuah istilah yang biasanya disediakan untuk bendungan hidroelektrik.
·           Tidal daya, yang menangkap energi dari pasang-surut dalam arah horisontal. Pasang datang, meningkatkan waterlevels dalam baskom, dan pasang roll out. Air harus melalui sebuah turbin untuk keluar dari baskom.
·           Tidal stream kekusaan, yang melakukan hal yang sama secara vertikal, menangkap aliran air seperti yang bergerak di seluruh dunia oleh pasang surut.
·          Gelombang daya, yang menggunakan energi dalam gelombang. Ombak besar biasanya akan memindahkan ponton s atas dan ke bawah.
·           Samudra energi termal (OTEC), yang menggunakan perbedaan suhu antara permukaan yang lebih hangat dan laut yang sejuk (atau dingin) ceruk lebih rendah. Untuk tujuan ini, ia mempekerjakan seorang Siklus energi
·          Deep pendinginan danau, bukan secara teknis metode generasi energi, meskipun dapat menyimpan banyak energi di musim panas. Terendam menggunakan pipa sebagai Heat sink untuk sistem iklim kontrol. Danau-bottom air sepanjang tahun konstan lokal sekitar 4 ° C.
Listrik tenaga air mungkin bukan pilihan utama untuk masa depan produksi energi di negara maju karena sebagian besar situs utama di negara ini dengan potensi pemanfaatan gravitasi dengan cara ini mungkin telah dieksploitasi atau tidak tersedia karena alasan lain seperti pertimbangan lingkungan. Membangun bendungan banjir sering melibatkan daerah yang luas lahan, perubahan habitat, dan sementara energi pembangkit tenaga listrik pada dasarnya tidak menghasilkan karbon dioksida, laporan baru-baru ini telah dikaitkan PLTA ke metana, yang membentuk membusuk terendam dari tanaman yang tumbuh di bagian-bagian kering dasar pada masa kekeringan. Metana adalah gas rumah kaca yang potensial.
Metode lain generasi energi (dan pendinginan) telah memiliki berbagai tingkat keberhasilan di lapangan. Gelombang dan badai keras untuk membuktikan kekuatan tekan, sementara OTEC belum diuji di lapangan skala besar.
Sebagian besar masyarakat umum menganggap energi tenaga air menjadi terbarukan.


Biomassa
Tumbuhan biasanya menggunakan fotosintesis untuk menyimpan tenaga surya, udara, dan CO 2 . Bahan bakar bio adalah bahan bakar yang diperoleh dari biomassa - Organisme atau produk dari metabolisme hewan, seperti kotoran dari sapi dan sebagainya. Ini juga merupakan salah satu sumber energi terbaharui.
Biasanya bahan bakar bio dibakar untuk energi kimia Melepas Yang Tersimpan di dalamnya. Riset untuk mengubah bahan bakar bio menjadi listrik Menggunakan sel bahan bakar adalah bidang penelitian yang sangat aktif.
Biomassa dapat Digunakan langsung sebagai bahan bakar atau untuk memproduksi bahan bakar bio cair. Biomass yang diproduksi dengan teknik pertanian, seperti biodesel, etanol, dan bagasse Sebuah hambatan adalah seluruh biomass harus melalui proses Beberapa berikut: harus dikembangkan, dikumpulkan, dikeringkan, difermentasi dan dibakar. Seluruh langkah ini membutuhkan banyak sumber daya dan infrastruktur.
Bahan bakar bio cair
Bahan bakar bio cair biasanya adalah bioalcohol seperti metanol, etanol dan biodesel. Biodiesel dapat digunakan pada kendaraan diesel modern dengan sedikit atau tanpa modifikasi dan dapat diperoleh dari limbah dan kasar sayur dan minyak hewani serta lemak. Di beberapa daerah jagung, gula bit, tebu dan rumput yang tumbuh secara khusus untuk menghasilkan etanol (juga dikenal sebagai alkohol) suatu cairan yang dapat digunakan dalam mesin pembakaran internal dan bahan bakar minyak.

Solid biomas
Penggunaan langsung biasanya dalam bentuk padatan yang mudah terbakar, baik kayu bakar atau tanaman lapangan yang mudah terbakar. Bidang tanaman dapat tumbuh secara khusus untuk pembakaran atau dapat digunakan untuk keperluan lain, dan limbah pabrik diproses kemudian digunakan untuk pembakaran. Kebanyakan jenis biomatter, termasuk pupuk kandang kering, sebenarnya dapat dibakar untuk memanaskan air dan menggerakkan turbin. Gula,tebu residu, gandum sekam, jagung tongkol dan tanaman lain pun bisa, dan, dibakar cukup berhasil. Proses tidak melepaskan CO bersih 2 .
Biogas
Banyak bahan-bahan organik dapat melepaskan gas, karena metabolisation bahan organik oleh bakteri (fermentasi). Landfills sebenarnya perlu melepaskan gas ini untuk mencegah ledakan berbahaya. Rilis kotoran hewan metana di bawah pengaruh anaerob bakteri
Juga, di bawah tekanan tinggi, suhu tinggi, anaerobik kondisi banyak bahan organik seperti kayu dapat menjadi gasified untuk menghasilkan gas. Hal ini sering ditemukan untuk menjadi lebih efisien daripada pembakaran langsung. Gas kemudian dapat digunakan untuk menghasilkan listrik dan / atau panas.
Biogas dapat dengan mudah dihasilkan dari aliran limbah saat ini, seperti: produksi kertas, produksi gula, limbah, kotoran hewan dan sebagainya. Berbagai aliran limbah harus slurried bersama-sama dan dibiarkan secara alami berfermentasi, menghasilkan gas metana. Kita hanya perlu mengubah kotoran saat ini biogas tanaman untuk tanaman, membangun lebih banyak terpusat lokal biogas kecil tanaman dan rencana untuk masa depan
Sumber energi skala kecil
Ada banyak sumber energi skala kecil yang umumnya tidak dapat ditingkatkan untuk ukuran industri. Daftar pendek:
·           PIEZO listrik kristal menghasilkan tegangan kecil setiap kali mereka mekanis cacat. Getaran dari mesin dapat merangsang listrik PIEZO kristal, seperti dapat tumit sepatu
·         Beberapa watches sudah didukung oleh kinetika, dalam hal ini gerakan lengan
·           Elektronika menghasilkan listrik dari energi kinetik air yang dipompa melalui saluran kecil
·         Khusus antena dapat mengumpulkan energi dari gelombang radio liar atau bahkan secara teori cahaya ( EM radiasi).

Tidak ada komentar:

Posting Komentar